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Oxidative Phosphorylation

- In Glycolysis and the citric acid cycle,

we’ve made a lot of reduced cofactors
NADH and FADH,

- In oxidative phosphorylation, we use the
energy generated by reoxidation of these
cofactors to make ATP
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Reduction Potential

- Reduction potential E°is a measure of how much a molecule likes
to gain electrons.

- In areaction AE® = E°¢ cpror) = E°(donor)

- Thus:
NAD* + H* + 2e <> NADH Eo=-0315V
120, + 2H" + 2¢” <> H,0 °=0.815V
NADH + H* + 2e + 120, <> NAD" + H,O AE°=1130V
- Converting to AG: #e

AG - -nF(AE°)

Faraday’s const: 96,485 C/mol



Reduction Potential and Oxidative Phosphorylation
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The Complexes: Pumping out protons
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Complex 1: NADH Co-Q Oxidoreductase
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Complex 2: Succinate:Co-Q Oxidoreductase

Mitochondrial Purpose: To

Matrix regenerate
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Complex 3: Co-Q:Cytochrome c oxidoreductase
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Complex IV: Cytochrome C oxidase (COX)
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Complex V: ATP synthase

- This large complex uses the proton
gradient to drive the phosphorylation
ot ADP.

(Matrix) F




Summing up Oxidative Phosphorylation
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Control of Oxidative Phosphorylation

- Oxidative phosphorylation is a target for many highly effective
poisons, but is only weakly controlled metabolically.

- It is possible to ‘uncouple’ oxidative phosphorylation by making
the inner mitchondrial membrane permeable (dinitrophenol and
fatty acids in brown fat).

- Generally, control boils down to the strength of the matrix/
intermembrane space proton gradient. If it’s too high, oxidative
phosphorylation backs up at Complex 1.

- Otherwise, control is via the presence or absence of NADH and/or
ADP (acceptor control).



Lipid Metabolism

- Lipids are loosely defined: Fat soluble (lipophilic) molecules

N\NW\/I Cholesterol
o

A phospholipid



Biological Roles of Lipids

- Lipids can do all kinds of stuft:

- Membranes (phospholipids)

cHs  Retinol (vitamin A)



Lipids and Energy Storage

- The primary long term energy storage molecules of the body are

Triacylglycerols, e.g. 0
100 VNN

0

Hc*_o/g\/\/\/\/—ﬂ/\/\/\/
| g 12 15
H,C—07 AV N Ve

- Good for energy storage because:

- Carbons are in lower oxidation states

- Triacyclycerols exclude water (higher energy/weight)

Constituent AH(kJ - g~ ! dry weight)
Carbohydrate 16
Fat 37
Protein 17

Source: Newsholme, E.A. and Leech, A.R., Biochemistry for the Medical
Sciences, p. 16, Wiley (1983).



Triacylglycerols to Fatty Acids

- Breakdown of triacylglycerols to liberate fatty acids is by lipase
enzymes, mostly in the pancreas

- Attacks C, and C; to form sequentially a 1,2-
diacylglycerol and a 2-acylglycerol

- Mechanism is like chymotrypsin: Activated
Serine nucleophilic attack on a carbonyl carbon
with oxianion hole stabilization of the
tetrahedral intermediate and the transition
state




Fatty Acids

- Once we've got our fatty acids:

Ay s Ay

I
CH;CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,COH

¥ ¥
*/Rﬁﬂjﬂ’ﬁ

Stearic acid

- We’ve gotta activate them!
- Acyl-coA Synthetase does it

- Fatty acid — Acyl-CoA is
endergonic

- Hydrolysis of pyrophosphate is
exergonic
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B-Oxidation of Acyl-CoA

- We can feed
both the citric
acid cycle and
oxidative
phosphorylation
with fatty acids:
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Troubles With ‘Ditterent’ Fatty Acids

- Most fatty acids are even
numbered chains, but if
they’'re odd numbered,
then we end up with
propionyl-CoA instead of
Acetyl-CoA

- This problem is
solved by conversion
to succinyl-CoA,
which we can also
feed into the citric
acid cycle

I
CHS_CHQ_ C—SCoA
Propionyl-CoA
ATP + CO,

propionyl-CoA carboxylase
ADP + P,

T
- 0,C—C—C—SCoA

CHj
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i
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CO,
(R)-Methylmalonyl-CoA

l methylmalonyl-CoA mutase

O

"0, —CH,—CH,—C—SCoA

Succinyl-CoA



Dealing with Double
Bonds

- Cis double bonds
can cause us all

kinds of headaches
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Water Soluble Acetyl-CoA Packaging

- The liver can supply energy to
peripheral tissues via water soluble

‘ketone bodies’.
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Fatty Acid Synthesis

- So tar, we've broken down fatty acids via B-oxidation to get energy.
But what if we want to store our Acetyl-CoA?

- To start off, we need an acyl-CoA molecule with an activated c-
terminus in the form of a carboxylate group: Malonyl-CoA
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Fatty Acid Synthesis

- The entire process of fatty acid

synthesis is carried out on a single, very 1
multifunctional protein: Fatty Acid /
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Fatty Acid Synthesis, Steps 1 and 2:
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Fatty Acid Synthesis, Steps 3 and 4

| .
CH3—?—C H,—C=—S
OH

HS
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H>O

|
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H
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Cholesterol Biosynthesis

NH,
- It all starts with HMG-CoA I/U o o (NIjN
\n/\/ \H/H%O('JI? Oélf O. N
IUPAC name: (9R,21S)-1-[(2R,3S,4R,5R)-5- o OH
(6-amino-9H-purin-9-yl)-4-hydroxy- 3-(phosphonooxy)tetrahydrofuran- o(ff‘o

2-yl]- 3,5,9,21-tetrahydroxy-8,8,21-trimethyl- 10,14,19-trioxo-2,4,6-
trioxa-18-thia- 11,15-diaza-3,5-diphosphatricosan-23- oic acid 3,5-
dioxide

- The end goal of the ‘first stage’ of cholesterol (isoprenoid) synthesis
gets us to Farnesyl pyrophosphate:



Overview of Isoprenoid Synthesis

Acety-CoA —» —» HMG-CoA

Y

Mevalonate
-— =+— Mevalonate
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Isopentenyl ~ Dimethylallyl :
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trans-Prenyl Squalene cis-Prenyl
transierase synthase transferase
F\Geranyl- 'L l
gerany! Squalene
Y phosphate ,L l

Ger:nyl— i ¢ l

geranylated

proteins Dolichol

Ubiguinone Cholesterol

—— Major choke point!

Common
intermediate

Protein
prenyl
transferase

'
y

'

Farnesylated
proteins



Cholesterol Biosynthesis A o o NG

Dimethylallyl pyrophosphate ' Isopentenyl pyrophosphate
- It we’re making cholesterol S
(or a derivative) the next P, e
step is to make Squalene " @

'\ /;\\\\/ Geranyl pyrophosphate

(P)—(®)—o eu? (11
o = . ? Farnesy] prenyltransferase 0 ®_E®
+ pyrophosphate vhieiac to tall) PP
H H
® - ®o-¢ on, e e
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o Z Z F i g

I t PP, Farnesyl )\\"w"

pyrophosphate Farnesyl pyrophosphate
H i g, /Y\ B /ﬁ/
<]5>_ CPE_ O~ éI Iy %; ; i(* \ squa;jf:,im;;\ J - _D\/\T/[
™ (head to head)

/1 / /J NADP* + 2 PP, +— Farnesyl pyrophosphate
Presqualene R
pyrophosphate J (

NADFPH e
11 NADP" + PP, w |
P d
e T

Squalene Squalene



Cholesterol Biosynthesis

- Next step: Oxidize Squalene

+ H,0

NADPH NADP*
+ 0, \\x //* -

squalene
epoxidase

Squalene 2,3-Oxidosqualene

- This will allow us to initiate a super-cool cyclation reaction



Cholesterol Biosynthesis

- Super-cool cyclation: "

- The process is initiated by ~__— " 7]

2,3-Oxidosqualene

protonation of the oxidosqualene
epoxide oxygen.

- Now we have the 6,6,6,5 ring

system associated with most
steroids.

- But we still have a long way
to go!!

Lanosterol



Cholesterol
Biosynthesis

N&DPH NADIPIH
H OH L HO 0y

- It’s a long trip
from lanosterol to
cholesterol

Lanosterol
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D'd i
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CHO 13 I:HHII
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HO HO HO
16 17
C@V\(
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R
MNALNPYH
g
HO < HO HO
1 7
K
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Cholesterol As a
Precursor

- Cholesterol can be
converted to many hormone
signalling molecules
including:

- Progestins (female
reproductive)

- Androgens/Estrogens

- Corticoids (general
metabolism)

3{ )

Dehydroisoandrosterone

|

An androgen

OH
o : f
Testosterone
3}
An estrogen

OH

%

HO

Estradinl

F a
=0
} | i‘ OH
)
17-Hydroxyprogesterone
4\ {I:Hzc}H
=0
; 1 i' {OH
4]
11-Deoxycortisol
5[
A glucocorticoid {EH"ZUH
C=0
HoE ; | i‘ OH
O
Cortisol

HO

Corticosterons
6,7 j{

A mineralo-
corticoid c=0

OHC
7C:(§j
o]

Aldosterons



Statins: It’s All About Timing

- Statins, like lipotor, zocor etc. are competitive HMG-CoA reductase

inhibitors o
- These inhibitors cause a

HOW_~go0- sudden decrease in cholesterol
concentration

-

- Cells respond by making more
HMG-CoA reductase and low
density lipoprotein (LDL)

KoH  R-CH, Lovastatin Ofovacon Avorvastatin Liiion receptor

Xe=H R=0H Pravastatin (Pravachol)
X=CH; R=CH; Simvastatin (Zocor)

- Increased expression of HMG-

HO

\ooo™
e o CoA returns cholesterol levels to
O e
L. ol P normal, but the extra LDL
HMG-Coa Movalonate receptor causes above normal

removal of LDI from the blood-
stream!



